\(\displaystyle J_0 (x) = \frac{1}{\pi }\int\limits_{ - \pi /2}^{\pi /2} {\cos (x\sin \theta )d\theta }\)
Show that
\(\displaystyle J_0 '' + \frac{1}{x}J_0 ' + J_0 = 0\)
I've done the following (don't know if it's possible to calculate any of these integrals):
\(\displaystyle J_0 ' = \frac{1}{\pi }\int\limits_{ - \pi /2}^{\pi /2} { - \sin (x\sin \theta )\sin \theta d\theta }\)
\(\displaystyle J_0 '' = \frac{1}{\pi }\int\limits_{ - \pi /2}^{\pi /2} { - \cos (x\sin \theta )\sin ^2 \theta d\theta }\)
So now what?
Thanks!
Show that
\(\displaystyle J_0 '' + \frac{1}{x}J_0 ' + J_0 = 0\)
I've done the following (don't know if it's possible to calculate any of these integrals):
\(\displaystyle J_0 ' = \frac{1}{\pi }\int\limits_{ - \pi /2}^{\pi /2} { - \sin (x\sin \theta )\sin \theta d\theta }\)
\(\displaystyle J_0 '' = \frac{1}{\pi }\int\limits_{ - \pi /2}^{\pi /2} { - \cos (x\sin \theta )\sin ^2 \theta d\theta }\)
So now what?
Thanks!