Derivative

kickingtoad

New member
Joined
Nov 12, 2010
Messages
20
I am tripping on finding the derivative of this.

f(x)=(3x23)7(2x27)14\displaystyle {f(x)=(-3x^{2}-3)^{7}(2x^{2}-7)^{14}}

find f'(x)

f(x)=(F(x)G(x))G(x)\displaystyle {f'(x)=(F'(x)G(x))G'(x)}

This is what I've been doing...

1. 7(3x23)6(6x)14(2x27)13(4x...\displaystyle {7(-3x^{2}-3)^{6}(-6x)14(2x^{2}-7)^{13}(4x}...

How do I know which part to use for G(x)\displaystyle G'(x) at the end?
 
This function is a product of two functions, so you must use the product rule. Each factor in the product is a composition of functions, so you will apply the chain rule twice, as you are doing the product rule. Try it again and I'll help you more if you're stuck.
 
\(\displaystyle {7(-3x^{2}-3)^{6}(-3x^{2}-3)(-6x)+14(2x^{2}-7)^{13}(2x^{2}-7)(4x)\)

What to do from here?
 
Your answer is almost correct. You added an extra factor of

3x23\displaystyle -3x^2-3

in the first term, and an extra factor of

2x27\displaystyle 2x^2-7

in the last term. Just get rid of these two factors and the answer is right.
 
Hello, kickingtoad!

Differentiate: .\(\displaystyle h(x) \:=\:(-3x^{2}-3)^7(2x^{2}-7)^{14}\)

I did it like this . . .

h(x)  =  [3(x2+1)]7(2x27)14  =  (3)7(x2+1)7(2x27)14  =  2187(x2+1)7f(x)(2x27)14g(x)\displaystyle h(x) \;=\;\left[-3(x^2+1)\right]^7(2x^2-7)^{14} \;=\; (-3)^7(x^2+1)^7(2x^2-7)^{14} \;=\;-2187\overbrace{(x^2+1)^7}^{f(x)}\overbrace{(2x^2-7)^{14}}^{g(x)}


Product Rule:   h(x)  =  2187[(x2+1)7f(x)14(2x27)134xg(x)  +  7(x2+1)62xf(x)(2x27)14g(x)]\displaystyle \text{Product Rule: }\;h'(x) \;=\;-2187\cdot \left[\overbrace{(x^2+1)^7}^{f(x)} \cdot \overbrace{14(2x^2-7)^{13}\cdot 4x}^{g'(x)} \;+\; \overbrace{7(x^2+1)^6\cdot2x}^{f '(x)} \cdot \overbrace{(2x^2-7)^{14}}^{g(x)}\right]

. . . . h(x)  =  2187[56x(x2+1)7(2x27)13+14x(x2+1)6(2x27)14]\displaystyle h'(x) \;=\;-2187\bigg[56x(x^2+1)^7(2x^2-7)^{13} + 14x(x^2+1)^6(2x^2-7)^{14}\bigg]

. . . . . . . . =  2187(14x)(x2+1)6(2x27)13[4(x2+1)+(2x27)]\displaystyle =\;-2187(14x)(x^2+1)^6(2x^2-7)^{13}\bigg[4(x^2+1) + (2x^2-7)\bigg]

. . . . . . . . =  30, ⁣618  ⁣x(x2+1)6(2x27)13[4x2+4+2x27]\displaystyle =\;-30,\!618\:\!x(x^2+1)^6(2x^2-7)^{13}\left[4x^2 + 4 + 2x^2 - 7\right]

. . . . . . . . =  30, ⁣618  ⁣x(x2+1)6(2x27)13(6x23)\displaystyle =\;-30,\!618\:\!x(x^2+1)^6(2x^2-7)^{13}(6x^2 - 3)

. . . . . . . . =  91, ⁣854  ⁣x(x2+1)6(2x27)13(2x21)\displaystyle =\;-91,\!854\:\!x(x^2+1)^6(2x^2-7)^{13}(2x^2-1)

 
kickingtoad said:
I am tripping on finding the derivative of this.

f(x)=(3x23)7(2x27)14\displaystyle {f(x)=(-3x^{2}-3)^{7}(2x^{2}-7)^{14}}

find f'(x)

kickingtoad,

I would suggest you consider factoring out a 3\displaystyle -3 first:

f(x)=[3(x21)]7(2x27)14=\displaystyle f(x) = [-3(x^2 - 1)]^7(2x^2 - 7)^{14} =

(3)7(x21)7(2x27)14=\displaystyle (-3)^7(x^2 - 1)^7(2x^2 - 7)^{14} =

2,187(x21)7(2x27)14\displaystyle -2,187(x^2 - 1)^7(2x^2 - 7)^{14}

Then concentrate on the product rule for the product of the last two factors,
which are the polynomial factors, as you carry down 2,187\displaystyle -2,187 as a
multiplier on that part of the evolving simplification of the derivative (result).
 
Top