\(\displaystyle f(x) \ = \ [csc(x)][x+cot(x)] \ = \ \bigg[\frac{1}{sin(x)}\bigg]\bigg[x+\frac{cos(x)}{sin(x)}\bigg]\)
\(\displaystyle = \ \bigg[\frac{x}{sin(x)}+\frac{cos(x)}{sin^{2}(x)}\bigg] \ = \ \frac{xsin(x)+cos(x)}{sin^{2}(x)}.\)
\(\displaystyle \ D_x \bigg[\frac{xsin(x)+cos(x)}{sin^{2}(x)}\bigg]=\frac{sin^{2}(x)[sin(x)+xcos(x)-sin(x)]-[xsin(x)+cos(x)][2sin(x)cos(x)]}{sin^{4}(x)}\)
\(\displaystyle = \ \frac{xsin^{2}(x)cos(x)-2xsin^{2}(x)cos(x)-2sin(x)cos^{2}(x)}{sin^{4}(x)} \ = \ \frac{-3xsin^{2}(x)cos(x)-2sin(x)cos^{2}(x)}{sin^{4}(x)}\)
\(\displaystyle = \ \frac{-3xsin(x)cos(x)-2cos^{2}(x)}{sin^{3}(x)}, We \ could \ stop \ here, \ but \ I'll \ go \ on.\)
\(\displaystyle = \ \frac{-3xsin(x)cos(x)}{sin^{3}(x)} \ \frac{-2cos^{2}(x)}{sin^{3}(x)} \ = \ -3xcot(x)csc(x)-2cot^{2}(x)csc(x)\)
\(\displaystyle = \ [ cot(x)csc(x)][-3x-2cot(x)], QED\)