derivative of the function

neither do I ... do you mean

f(x)=(3x2x)4(x3+4x)3\displaystyle f(x) = (3x^2-x)^4 (x^3+4x)^3

???

if so, the product and chain rules are in order ...

f(x)=(3x2x)43(x3+4x)2(3x2+4)+(x3+4x)34(3x2x)3(6x1)\displaystyle f'(x) = (3x^2-x)^4 \cdot 3(x^3+4x)^2 \cdot (3x^2 + 4) + (x^3+4x)^3 \cdot 4(3x^2-x)^3 \cdot (6x-1)

to simplify, factor out common factors from both terms ...

f(x)=(3x2x)3(x3+4x)2[3(3x2x)(3x2+4)+4(x3+4x)(6x1)]\displaystyle f'(x) = (3x^2-x)^3(x^3+4x)^2[3(3x^2-x)(3x^2+4) + 4(x^3+4x)(6x-1)]

I'll leave the remaining algebra "clean-up" for you.
 
Top