Re: Derivative of exponential function
serenaleesl said:
The proof of the derivative of a^x using limit approach: -
(a^x)*Lim (h->0) (a^h - 1 )/ h
= (a^x)*ln a.
how does the limit approach gives rise to ln a?
For this, you need this more basic limit:
e^(x + h) - e^x
lim ---------------- = e^x
h->0 h
I.e. prove that the derivative of e^x is e^x.
{Sorry, I don't have a nice proof of that for you. I think I saw one about 50 years ago in my elementary calculus book but...}
Now you want to compute:
a^(x + h) - a^x
lim ----------------
h->0 h
Remembering that a^x can be written e^(x ln a):
(e^ln a)^(x + h) - (e^ln a)^x
lim ------------------------------
h->0 h
e^((x + h)ln a) - e^(x ln a)
lim ---------------------------------
h->0 h
e^(x ln a + h ln a) - e^(x ln a)
lim ---------------------------------
h->0 h
Substitute: k = h ln a, and y = x ln a
e^(y + k) - e^y
lim --------------------
h->0 h/ln a
e^(y + k) - e^y
ln a lim ----------------------
k->0 k
ln a e^y =
ln a e^(x ln a) =
ln a a^x