\(\displaystyle f(x) = ln\sqrt(1-x^2)\)
\(\displaystyle f'(x) = \frac{d}{dx}[ln\sqrt(1-x^2)]\)
(Use chain rule twice)
\(\displaystyle f'(x) = [\sqrt{1-x^2} \rightarrow \frac{1}{x}][\frac{d}{dx}\sqrt{1-x^2}]\)
\(\displaystyle f'(x) = [\sqrt{1-x^2} \rightarrow \frac{1}{x}][\,\,[(1-x^2) \rightarrow \frac{1}{2\sqrt{x}}][\frac{d}{dx}(1-x^2)]\)
\(\displaystyle f'(x) = [\sqrt{1-x^2} \rightarrow \frac{1}{x}][\,\,[(1-x^2) \rightarrow \frac{1}{2\sqrt{x}}][-2x]\)
\(\displaystyle f'(x) = [\frac{1}{\sqrt{1-x^2}}][\frac{1}{2\sqrt{1-x^2}}][-2x]\)
\(\displaystyle f'(x) = \frac{-2x}{2(1-x^2)}\)
\(\displaystyle f'(x) = \frac{-x}{(1-x^2)}\)
\(\displaystyle f'(x) = \frac{x}{(x^2-1)}\)
we can bring the -1 from the numerator to the denominator: \(\displaystyle -(1-x^2) = (-1 + x^2) = (x^2 - 1)\)
Cheers,
John