nikkor180 & edit said:
y' = -x^2 / y^2. Differentiating y' gives
\(\displaystyle >>\) y'' = [-2xy^2 + 2x^2yy'] / y^3 \(\displaystyle <<\)
which simplifies to -2x/y^5 [x^3 + y^3].
But we are given x^3 + y^3 = 1 and hence y'' = -2x/y^5.
nikkor180,
the highlighted expression needs a different exponent on the y variable in the denominator:
y'' = [-2xy^2 + 2(x^2)yy']/(y^2)^2 =
[-2xy^2 + 2(x^2)yy']/y^4 =
\(\displaystyle \frac{-2xy^2 + 2x^2yy'}{y^4} =\)
\(\displaystyle \frac{y(-2xy^2 + 2x^2yy')}{y(y^4)} =\)
\(\displaystyle \frac{-2xy^3 + 2x^2y^2y'}{y^5} =\)
Substitute in the y' expression:
\(\displaystyle \frac{-2xy^3 + 2x^2y^2(\frac{-x^2}{y^2})}{y^5}=\)
\(\displaystyle \frac{-2xy^3 - 2x^4}{y^5} =\)
\(\displaystyle \frac{-2x}{y^5}(y^3 + x^3) =\)
\(\displaystyle Note: \ \ x^3 + y^3 = 1 \ (or \ y^3 + x^3 = 1) \ from \ the \ given.\)
\(\displaystyle \frac{-2x}{y^5}(1) =\)
\(\displaystyle \frac{-2x}{y^5}\)