Math wiz ya rite 09
Junior Member
- Joined
- Aug 27, 2006
- Messages
- 136
If f and g are continuously differentiable functions for all real numbers, which of the following definite integrals is equal to f(g(4))-f(g(2))?
\(\displaystyle \int_{2}^{4}{f'(g(x))}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g(x))f'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g(x))g'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f'(g(x))g'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g'(x))g'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f'(g(x))}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g(x))f'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g(x))g'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f'(g(x))g'(x)}}\ dx\)
\(\displaystyle \int_{2}^{4}{f(g'(x))g'(x)}}\ dx\)