definite integral with limit (2)

stuart clark

New member
Joined
Mar 3, 2011
Messages
25
limnn.10(x+ex)ndx\displaystyle \lim_{n\to\infty }n.\int_{-1}^{0}\left(x+e^x\right)^ndx
 
Wow, where are you getting these problems?.

Try starting with parts:

10n(x+ex)ndx=10x+ex1+ex[(x+ex)n]dx\displaystyle \int_{-1}^{0}n(x+e^{x})^{n}dx=\int_{-1}^{0}\frac{x+e^{x}}{1+e^{x}}[(x+e^{x})^{n}]'dx

Using parts, we get:

12(1+e1)n+11+e110(x+ex)n[2exx+1e2x+2ex+1]dx\displaystyle \frac{1}{2}-\frac{(-1+e^{-1})^{n+1}}{1+e^{-1}}-\int_{-1}^{0}(x+e^{x})^{n}\left[\frac{2e^{x}-x+1}{e^{2x}+2e^{x}+1}\right]dx

Now, can you finish and see what the result is?.
 
Top