∫ lnx/5x dx interval (2,4) u=lnx du= d/dx(lnx)dx=(1/x)dx 1/5∫ u/xdx (1/5)(1/2)(u^2) 1/10(lnx^2) 1/10[ln(4)^2] - 1/10[ln(2)^2] = Where I'm I going wrong? How do I arrive at 3/10? Answer is: 3/10(ln2)^2