\(\displaystyle \int_0^1 \frac{x^3}{\sqrt{4+x^2}} dx\)
\(\displaystyle u = 4 + x^2\)
\(\displaystyle x^2 = u - 4\)
\(\displaystyle du = 2x \, dx\)
\(\displaystyle \frac{1}{2} \int_0^1 \frac{x^2 \cdot 2x}{\sqrt{4+x^2}} dx\)
\(\displaystyle \frac{1}{2} \int_4^5 \frac{u-4}{\sqrt{u}} \, du\)
\(\displaystyle \frac{1}{2} \int_4^5 u^{\frac{1}{2}} - 4u^{-\frac{1}{2} \, du\)