definite integral, from 0 to 1, of x^3 / (4 + x^2)^(1/2)

clw89

New member
Joined
Jan 23, 2008
Messages
6
Hey I need help with the following integral:

the integral from 0 to 1 of: x[sup:24y84zxd]3[/sup:24y84zxd]/(4+x[sup:24y84zxd]2[/sup:24y84zxd])[sup:24y84zxd]1/2[/sup:24y84zxd]

thanks!!
 
Hello, clw89!

\(\displaystyle \text{Evaluate: }\:\int^1_0\frac{x^3}{\sqrt{4+x^2}}\,dx\)

I would try Trig Substitution . . .


\(\displaystyle \text{Let: }\,x \:=\:\2tan\theta\quad\Rightarrow\quad dx \:=\:2\sec^2\!\theta\,d\theta\)
. . \(\displaystyle \text{and: }\:\sqrt{4+x^2} \:=\:2\sec\theta\)

\(\displaystyle \text{Substitute: }\;\int\frac{8\tan^3\!\theta}{2\sec\theta}\,(2\sec^2\!\theta\,d\theta) \;=\;8\int\sec\theta\tan^3\!\theta\,d\theta\)

. . \(\displaystyle =\;8\int\tan^2\!\theta(\sec\theta\tan\theta\,d\theta) \;=\;8\int(\sec^2\!\theta-1)(\sec\theta\tan\theta\,d\theta)\)


. . \(\displaystyle \text{Now let }\,u \:=\:\sec\theta\) . . .

 
\(\displaystyle \int_0^1 \frac{x^3}{\sqrt{4+x^2}} dx\)

\(\displaystyle u = 4 + x^2\)

\(\displaystyle x^2 = u - 4\)

\(\displaystyle du = 2x \, dx\)

\(\displaystyle \frac{1}{2} \int_0^1 \frac{x^2 \cdot 2x}{\sqrt{4+x^2}} dx\)

\(\displaystyle \frac{1}{2} \int_4^5 \frac{u-4}{\sqrt{u}} \, du\)

\(\displaystyle \frac{1}{2} \int_4^5 u^{\frac{1}{2}} - 4u^{-\frac{1}{2} \, du\)
 
Top