I have two questions, it would be awesome if you could check my work / help. Thank you
Question 1.
. . .p -> r
. . .p v q
. . .not q
. . .therefore r
My work
. . .p - > r : Premise
. . .p v q : Premise
. . .q v p : (logically equivalent to 2)
. . .not q - > p : (logically equivalent to 3)
. . .not q : Premise
. . .therefore r : (hypothetical syllogism using 4 and 1)
Question 2.
. . .\(\displaystyle \forall x \in R, p(x) \text{ v } q(x)\)
. . .\(\displaystyle \text {a} \in R\)
. . .\(\displaystyle q(a) - > r(a)\)
. . .\(\displaystyle \therefore p(a) \text { v } r(a)\)
My go at it:
. . .p(x) v q(x) : Premise
. . .p (a) v q(a) : Universal instantiation
. . .q(a) - > r(a) : Premise
. . .not q(a) v r(a) : Logically equivalent to above
Can I do?
. . .((a) v q(a)) ^ (not q(a) v r(a)) - > (p(a ) v r(a))
Is that wrong? If it's correct, I'm not sure why.
---
Thank you.
Question 1.
. . .p -> r
. . .p v q
. . .not q
. . .therefore r
My work
. . .p - > r : Premise
. . .p v q : Premise
. . .q v p : (logically equivalent to 2)
. . .not q - > p : (logically equivalent to 3)
. . .not q : Premise
. . .therefore r : (hypothetical syllogism using 4 and 1)
Question 2.
. . .\(\displaystyle \forall x \in R, p(x) \text{ v } q(x)\)
. . .\(\displaystyle \text {a} \in R\)
. . .\(\displaystyle q(a) - > r(a)\)
. . .\(\displaystyle \therefore p(a) \text { v } r(a)\)
My go at it:
. . .p(x) v q(x) : Premise
. . .p (a) v q(a) : Universal instantiation
. . .q(a) - > r(a) : Premise
. . .not q(a) v r(a) : Logically equivalent to above
Can I do?
. . .((a) v q(a)) ^ (not q(a) v r(a)) - > (p(a ) v r(a))
Is that wrong? If it's correct, I'm not sure why.
---
Thank you.
Last edited by a moderator: