cylinder n sphere

red and white kop!

Junior Member
Joined
Jun 15, 2009
Messages
231
a circular cylinder is to fit inside a sphere of radius 10cm. calculate the maximum possible volume of the cylinder. (it is probably best to take as your indpendent variable the height or half the height of the cylinder).
i'm stuck here cos i don't know where to start. i drew a section of the both to try and find a clue but i'm lost. any hints?
 
red and white kop! A trick. I found when working this type of problem to employ\displaystyle red \ and \ white \ kop! \ A \ trick. \ I \ found \ when \ working \ this \ type \ of \ problem \ to \ employ

the great circle of a sphere, thereby reducing the problem from 3 dimensional to 2\displaystyle the \ great \ circle \ of \ a \ sphere, \ thereby \ reducing \ the \ problem \ from \ 3 \ dimensional \ to \ 2

dimensional. See graph below of great circle.\displaystyle dimensional. \ See \ graph \ below \ of \ great \ circle.

[attachment=0:1hatex0y]xxx.JPG[/attachment:1hatex0y]

Hence R2 = r2 + (h/2)2      r2 = R2  h2/4\displaystyle Hence \ R^2 \ = \ r^2 \ + \ (h/2)^2 \ \implies \ r^2 \ = \ R^2 \ - \ h^2/4

Vcyl = πr2h = π[h(R2h2/4)] = π[hR2h3/4]\displaystyle V_{cyl} \ = \ \pi r^2 h \ = \ \pi[h(R^2-h^2/4)] \ = \ \pi[hR^2-h^3/4]

Now, when R = 10cm., we have V = π[100hh3/4]\displaystyle Now, \ when \ R \ = \ 10cm., \ we \ have \ V \ = \ \pi[100h-h^3/4]

Ergo, dVdh = π[1003h2/4] = 0      h = 2033\displaystyle Ergo, \ \frac{dV}{dh} \ = \ \pi[100-3h^2/4] \ = \ 0 \ \implies \ h \ = \ \frac{20\sqrt3}{3}

Now, I assume that you can take it from here.\displaystyle Now, \ I \ assume \ that \ you \ can \ take \ it \ from \ here.
 

Attachments

  • xxx.JPG
    xxx.JPG
    12.4 KB · Views: 83
Top