Hello, bittersweet!
Graph: \(\displaystyle y \;= \;x^5\,-\,5x^4\)
x-intercepts: \(\displaystyle \;x^5\,-\,5x^4\:=\:0\;\;\Rightarrow\;\;x^4(x\,-\,5)\:=\:0\;\;\Rightarrow\;\;x\:=\:0,\;5\)
Extrema: \(\displaystyle \,5x^4\,-\,20x^3\:=\:0\;\;\Rightarrow\;\;5x^3(x\,-\,4)\:=\:0\;\;\Rightarrow\;\;x\:=\:0,\;4\)
Using the second derivative test, we find that:
\(\displaystyle \;\;\;(0,0): \text{ maximum}\)
\(\displaystyle \;\;\;(4,-256): \text{ minimum}\)
That should be enough to graph the function . . .
Code:
|
| *
|
--------o-----------------------o----
* | * 5
* | * *
* | *
| * *
* | * *
| o
* | (4,-256)
Graph: \(\displaystyle \L\,y\;=\;\frac{x^2}{x^2\,+\,1}\)
The only intercept is (0,0).
First derivative: \(\displaystyle \L\,y'\;=\;\frac{(x^2\,+\,1)\cdot2x\,-\,x^2\cdot2x}{(x^2\,+\,1)^2}\;=\;\frac{2x}{(x^2\,+\,1)^2}\)
\(\displaystyle \;\;\)The only critical point is \(\displaystyle (0,0)\), a minimum.
Second derivative: \(\displaystyle \L\,y''\;=\;\frac{2(1\,-\,3x^2)}{(x^2\,+\,1)^3}\)
\(\displaystyle \;\;\)Inflection points: \(\displaystyle \,\left(\pm\frac{\sqrt{3}}{3},\,\frac{1}{4}\right)\)
Horizontal asymptote: \(\displaystyle \,y\,=\,1\)
Code:
|
- - - - - - - - - - + - - - - - - - - - -
* | *
* | *
* | *
* | *
* | *
* | *
--------------------o--------------------
|
See?
No graphing calculator could have told you all this.