No, not quite.
\(\displaystyle \frac{x^{2}}{16}+\frac{y^{2}}{9}=1\)
The LCM of 9 and 16 is 144, so multiply through by 144 and get:
\(\displaystyle 9x^{2}+16y^{2}=144\)
\(\displaystyle 16y^{2}=144-9x^{2}\)
\(\displaystyle y^{2}=\frac{144-9x^{2}}{16}\)
\(\displaystyle y=\sqrt{\frac{144-9x^{2}}{16}}\)
Factor out a 9 in the radical:
\(\displaystyle y=\sqrt{\frac{9(16-x^{2})}{16}}\)
Bring out the \(\displaystyle \sqrt{\frac{9}{16}}=\frac{3}{4}\)
\(\displaystyle y=\pm\frac{3}{4}\sqrt{16-x^{2}}, \;\ and \;\ 16-x^{2}\geq{0}\)
See?.