Curl of Product

I'mLearning

New member
Joined
Jan 22, 2024
Messages
13
Do you know if [math]\mathbf{k}\cdot\nabla\times(\mathbf{a}\cdot\nabla\mathbf{a})[/math] can be rewritten?

If so, which rules are applied?

EDIT: The term seems to equal [math](\mathbf{a}\cdot\nabla\mathbf{k}\cdot\nabla\times\mathbf{a}) + (\mathbf{k}\cdot\nabla\times\mathbf{a}\nabla\cdot\mathbf{a})[/math] Can that be true?
 
Do you know if [math]\mathbf{k}\cdot\nabla\times(\mathbf{a}\cdot\nabla\mathbf{a})[/math] can be rewritten?

If so, which rules are applied?

EDIT: The term seems to equal [math](\mathbf{a}\cdot\nabla\mathbf{k}\cdot\nabla\times\mathbf{a}) + (\mathbf{k}\cdot\nabla\times\mathbf{a}\nabla\cdot\mathbf{a})[/math] Can that be true?
What is k and a? Are those related anyway?
 
Do you know if [math]\mathbf{k}\cdot\nabla\times(\mathbf{a}\cdot\nabla\mathbf{a})[/math] can be rewritten?

If so, which rules are applied?

EDIT: The term seems to equal [math](\mathbf{a}\cdot\nabla\mathbf{k}\cdot\nabla\times\mathbf{a}) + (\mathbf{k}\cdot\nabla\times\mathbf{a}\nabla\cdot\mathbf{a})[/math] Can that be true?
Hi I'mLearning,
not me I meant you! 😁


Let [imath]\bold{k} = i + j + k[/imath] and let [imath]\bold{a} = 2i + 3j + 4k[/imath]

Solve the first form. Save your result for future comparison!

Solve the second form. Compare the two results. Are they equal?
 
Top