critical pts of f(x,y,z) = ln((x^7)*(y^11)*(z^2))-2xy-11y-7z

dopey9

New member
Joined
Jul 14, 2006
Messages
39
Basically i'v been given the following function

Let f(x, y, z) = ln ( (x^7)*(y^11)*(z^2)) − 2xy − 11y − 7z, where x > 0, y > 0, z > 0.

and i want to find the values of x, y and z at any critical point(s) of this function, and hence determine any local maximum or minimum values of f(x, y, z).

i was wondering whats the best way to go about this problem..can any one possibly start me off ..if not guide into how to solve the problem thankz
 
Re: critical pts of f(x,y,z) = ln((x^7)*(y^11)*(z^2))-2xy-11

Hello, dopey9!

Let \(\displaystyle \:f(x, y, z) \:=\:\ln(x^7y^{11}z^2)\,-\,2xy\,-\,11y\,-\,7z,\,\) where \(\displaystyle x,y,z\,>\,0\)

Find the values of \(\displaystyle x\), \(\displaystyle y\) and \(\displaystyle z\) at any critical point(s) of this function,
and hence determine any local maximum or minimum values of \(\displaystyle f(x, y, z).\)

I would expand that log portion:

\(\displaystyle \L f(x,y,z) \;=\;7\cdot\ln x\,+\,11\cdot\ln y\,+\,2\cdot\ln z \,-\,2xy\,-\,11y\,-\,7z\)


Then solve the system of equations:

. . \(\displaystyle \L\begin{array}{ccccc}f_x & \:=\: & \frac{7}{x}\,-\,2y & \:=\: & 0 \\
f_y & = & \frac{11}{y}\,-\,2x\,-\,11 & = & 0 \\
f_z & = & \frac{2}{z}\,-\,7 & = & 0 \end{array}\)

 
Top