cramer's rule e5q24 *

tamiatha

Junior Member
Joined
Apr 26, 2009
Messages
109
please explain cramer's rule to me
i textbook is confusing on the subject
i don't understand the first step of multiplying by a constant
my problem states:
solve the following using cramer's rule
3x-5y=21 and 4x+2y=2
 
Re: cramer's rule e5q24

Hello, tamiatha!

Solve by Cramer’s rule:   3x5y=214x+2y=2\displaystyle \text{Solve by Cramer's rule: }\;\begin{array}{ccc}3x-5y&=&21 \\ 4x+2y&=&2 \end{array}

[1] Find the determinant of the coefficients:   D=3-542  =  (3)(2)(-5)(4)  =  6+20=26\displaystyle \text{[1] Find the determinant of the coefficients: }\;D \:=\:\begin{vmatrix}3 & \text{-}5 \\4 & 2 \end{vmatrix} \;=\;(3)(2) - (\text{-}5)(4) \;=\;6 + 20 \:=\:26


[2] Find the x-determinant: Replace the x-coefficients with the constants.\displaystyle \text{[2] Find the }x\text{-determinant: }\:\text{Replace the }x\text{-coefficients with the constants.}

. . . 21-522  =  (21)(2)(-5)(2)  =  42+10=52\displaystyle \begin{vmatrix}21 & \text{-}5 \\ 2 & 2\end{vmatrix} \;=\;(21)(2) - (\text{-}5)(2) \;=\;42 + 10 \:=\:52
. . Divide by D ⁣:x=5226x=2\displaystyle \text{Divide by }D\!:\quad x\:=\:\frac{52}{26} \quad\Rightarrow\quad\boxed{ x \:=\:2}


[3] Find the y-determinant: Replace the y-coefficients with the constants.\displaystyle \text{[3] Find the }y\text{-determinant: }\:\text{Replace the }y\text{-coefficients with the constants.}

'. . . 32142  =  (3)(2)(21)(4)  =  684  =  78\displaystyle \begin{vmatrix}3 & 21 \\ 4 & 2\end{vmatrix} \;=\;(3)(2) - (21)(4) \;=\;6 - 84 \;=\;-78
. . Divide by D ⁣:y  =  -7826y  =  3\displaystyle \text{Divide by }D\!:\quad y \;=\;\frac{\text{-}78}{26} \quad\Rightarrow\quad\boxed{ y \;=\;-3}

 
Re: cramer's rule e5q24

big gigantic thank you
clear excellent explaination and the answer
sometimes i just need to see :D the problem worked out entirely for me to understand
now i am ready to do more like it
 
Top