Verify the identity \(\displaystyle \L\\cos(4x)=8cos^{4}(x)-8cos^{2}(x)+1\)
Here is what we have so far...
\(\displaystyle cos 4x = 2(cos^{2}x-1)\)
Now What?
Response 1:
\(\displaystyle \L\\sin^{2}(x)cos^{2}(x)=\frac{1-cos(4x)}{8}\)
i am still really confused....how do i plug that in... we havent been given that identity yet....here is wut i have so far now...
\(\displaystyle \L\\cos(x+y)=cos(x)cos(y)-sin(x)sin(y)\)
so \(\displaystyle \L\\cos2x=cos(x+x)=cos(x)cos(x)-sin(x)sin(x)\)
so \(\displaystyle \L\\cos4x=cos(2x+2x)=cos(2x)cos(2x)-sin(2x)sin(2x)\)
\(\displaystyle \L\\cos(2x+2x)=(2cos^{2}x-1)(2cos^{2}x-1)-(2sin(x)cos(x))(2sin(x)cos(x))\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4sin^{2}xcos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4((1-cosx)(1-cosx))cos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4(1-2cosx+cos^{2}x)cos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4cos^{2}x-8cos^{3}x+4cos^{4}x)\)
\(\displaystyle \L\\cos(2x+2x)=4cos^{4}x-4cos^{2}x+1-4cos^{2}x+8cos^{3}x-4cos^{4}x\)
but that is \(\displaystyle \L\\cos4x=8cos^{3}x-8cos^{2}x+1\)
not \(\displaystyle \L\\cos4x=8cos^{4}x-8cos^{2}x+1\)
So I'm almost thinking there is an error on the quiz, or the answer is N/A beings that the identity is not verifiable??? Please HELP!!!
Here is what we have so far...
\(\displaystyle cos 4x = 2(cos^{2}x-1)\)
Now What?
Response 1:
\(\displaystyle \L\\sin^{2}(x)cos^{2}(x)=\frac{1-cos(4x)}{8}\)
i am still really confused....how do i plug that in... we havent been given that identity yet....here is wut i have so far now...
\(\displaystyle \L\\cos(x+y)=cos(x)cos(y)-sin(x)sin(y)\)
so \(\displaystyle \L\\cos2x=cos(x+x)=cos(x)cos(x)-sin(x)sin(x)\)
so \(\displaystyle \L\\cos4x=cos(2x+2x)=cos(2x)cos(2x)-sin(2x)sin(2x)\)
\(\displaystyle \L\\cos(2x+2x)=(2cos^{2}x-1)(2cos^{2}x-1)-(2sin(x)cos(x))(2sin(x)cos(x))\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4sin^{2}xcos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4((1-cosx)(1-cosx))cos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4(1-2cosx+cos^{2}x)cos^{2}x)\)
\(\displaystyle \L\\cos(2x+2x)=(4cos^{4}x-4cos^{2}x+1)-(4cos^{2}x-8cos^{3}x+4cos^{4}x)\)
\(\displaystyle \L\\cos(2x+2x)=4cos^{4}x-4cos^{2}x+1-4cos^{2}x+8cos^{3}x-4cos^{4}x\)
but that is \(\displaystyle \L\\cos4x=8cos^{3}x-8cos^{2}x+1\)
not \(\displaystyle \L\\cos4x=8cos^{4}x-8cos^{2}x+1\)
So I'm almost thinking there is an error on the quiz, or the answer is N/A beings that the identity is not verifiable??? Please HELP!!!