\(\displaystyle f(x) = \cos(x)\)
\(\displaystyle f'(x) = \dfrac{d}{dx} \cos(x) = -\sin(x)\)
Proof
Using: \(\displaystyle \lim h \to 0[\dfrac{(x + h) - (f(x))}{h}]\)
\(\displaystyle \lim h \to 0[\dfrac{\cos(x + h) - (\cos(x))}{h}]\)
\(\displaystyle \lim h \to 0[\dfrac{[\cos(x)\cos(h) - \sin(x)\sin(h)] - (\sin(x))}{h}]\) using sum and difference identity \(\displaystyle \cos(A + B) = \cos(A) \cos(B) - \sin(A) \sin(B)\) for \(\displaystyle \cos(x + h)\) Next move
\(\displaystyle f'(x) = \dfrac{d}{dx} \cos(x) = -\sin(x)\)
Proof
Using: \(\displaystyle \lim h \to 0[\dfrac{(x + h) - (f(x))}{h}]\)
\(\displaystyle \lim h \to 0[\dfrac{\cos(x + h) - (\cos(x))}{h}]\)
\(\displaystyle \lim h \to 0[\dfrac{[\cos(x)\cos(h) - \sin(x)\sin(h)] - (\sin(x))}{h}]\) using sum and difference identity \(\displaystyle \cos(A + B) = \cos(A) \cos(B) - \sin(A) \sin(B)\) for \(\displaystyle \cos(x + h)\) Next move
Last edited: