Use \(\displaystyle \L\\x=rcos({\theta}), \;\ y=rsin({\theta})\)
Sub your given r into them:
The first one:
\(\displaystyle \L\\x=\underbrace{cot({\theta})csc({\theta})}_{\text{r}}cos({\theta})=cot^{2}({\theta})\)
\(\displaystyle \L\\y=cot({\theta})csc({\theta})sin({\theta})=cot({\theta})\)
See?. Now, do the others.