erm...im facing problem in identifying the limit of double integral in polar coordinates...
normal ll jus substitute with \(\displaystyle \int_{0}^{2/\pi} and \int_{0(why.always.zero.???)}^{2(r=2.???)}\)
= \(\displaystyle \int_{0}^{2/\pi} \int_{0}^{2} [r Sin r^2] dr d{\theta}\)
= \(\displaystyle \int_{0}^{2/\pi} [-(1/2)(Cos[2^2])]-[-(1/2)(Cos[(0)^2])] d{\theta}\)
= \(\displaystyle \int_{0}^{2/\pi} [(1/2)-(1/2)(Cos[4])] d{\theta}\)
= \(\displaystyle (2\pi)(1/2)[1-cos[4]]\)
= \(\displaystyle [1-cos[4]]\pi\)
= \(\displaystyle \int_{-\pi/2}^{\pi/2} \int_{???}^{0} r sin {\theta} r dr d{\theta}\)
=\(\displaystyle \int_{-\pi/2}^{\pi/2} \int_{0}^{2 sin {\theta}} [r cos {\theta}] r dr d{\theta}\)
normal ll jus substitute with \(\displaystyle \int_{0}^{2/\pi} and \int_{0(why.always.zero.???)}^{2(r=2.???)}\)
\(\displaystyle \int_{-2}^{2} \int_{0}^{\sqrt{[4-x^{2}]}} [Sin[x^2+y^2]] dy dx\)
= \(\displaystyle \int_{0}^{2/\pi} \int_{0}^{2} [r Sin r^2] dr d{\theta}\)
= \(\displaystyle \int_{0}^{2/\pi} [-(1/2)(Cos[2^2])]-[-(1/2)(Cos[(0)^2])] d{\theta}\)
= \(\displaystyle \int_{0}^{2/\pi} [(1/2)-(1/2)(Cos[4])] d{\theta}\)
= \(\displaystyle (2\pi)(1/2)[1-cos[4]]\)
= \(\displaystyle [1-cos[4]]\pi\)
\(\displaystyle \int_{0}^{2} \int_{\sqrt{[4-x^{2}]}}^{0} y dy dx\)
= \(\displaystyle \int_{-\pi/2}^{\pi/2} \int_{???}^{0} r sin {\theta} r dr d{\theta}\)
\(\displaystyle \int_{0}^{2} \int_{y}^{-\sqrt{[2y-y^{2}]}} x dx dy\)
=\(\displaystyle \int_{-\pi/2}^{\pi/2} \int_{0}^{2 sin {\theta}} [r cos {\theta}] r dr d{\theta}\)