I dont know how to solve this problem.
Convert the integral:
. . .[pi/2-integral-pi][0-integral-2][0-integral-(4-r^2)^(1/2)] r^2 cos(theta) dz dr d(theta)
...to a equivalent integral in spherical coordinates.
I know that:
. . .x = p sin(theta) cos(theta)
. . .y = p sin(theta) sin(theta)
. . .z = p cos(theta)
. . .p = 2 cosQ
. . .r = 2 cos(theta)
But I don't know how to convert it. Can somebody help me please? :roll:
Convert the integral:
. . .[pi/2-integral-pi][0-integral-2][0-integral-(4-r^2)^(1/2)] r^2 cos(theta) dz dr d(theta)
...to a equivalent integral in spherical coordinates.
I know that:
. . .x = p sin(theta) cos(theta)
. . .y = p sin(theta) sin(theta)
. . .z = p cos(theta)
. . .p = 2 cosQ
. . .r = 2 cos(theta)
But I don't know how to convert it. Can somebody help me please? :roll: