Hello, she18!
Convert .\(\displaystyle r\:=\:\frac{6}{2\,-\,3\cdot\sin\theta}\) .to a cartesian equation
We have:
.\(\displaystyle r(2\,-\,3\cdot\sin\theta)\:=\:6\;\;\Rightarrow\;\;2r\,-\,3\cdot r\sin\theta\:=\:6\;\;\Rightarrow\;\;2r\:=\;3\cdot r\sin\theta\,+\,6\)
Convert:
.\(\displaystyle 2\sqrt{x^2\,+\,y^2}\:=\:3y\,+\,6\)
Square:
.\(\displaystyle 4(x^2\,+\,y^2)\:=\
3y\,+\,6)^2\;\;\Rightarrow\;\;4x^2\,+\,4y^2\:=\:9y^2\,+\,36y\,+\,36\)
Therefore:
.\(\displaystyle 5x^2\,-\,5y^2\,-\,36y\:=\:36\) . . . hyperbola