converting into an algebraic form cos(arcsin2x) is it cos(2/sqrt (1-(2x))2
I icyhot2590 New member Joined Mar 18, 2007 Messages 22 Mar 21, 2007 #1 converting into an algebraic form cos(arcsin2x) is it cos(2/sqrt (1-(2x))2
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Mar 21, 2007 #2 No, it's \(\displaystyle \L\\\sqrt{1-4x^{2}}\)....why?.
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Mar 21, 2007 #3 \(\displaystyle \L \begin{array}{rcl} y & = & \arcsin (2x) \\ \sin (y) & = & 2x \\ \cos (y) & = & \sqrt {1 - 4x^2 } \\ \cos (\arcsin (2x)) & = & \sqrt {1 - 4x^2 } \\ \end{array}\)
\(\displaystyle \L \begin{array}{rcl} y & = & \arcsin (2x) \\ \sin (y) & = & 2x \\ \cos (y) & = & \sqrt {1 - 4x^2 } \\ \cos (\arcsin (2x)) & = & \sqrt {1 - 4x^2 } \\ \end{array}\)