Converging Absolutely

kiddopop

New member
Joined
Sep 14, 2009
Messages
25
Find all values of x for which the series inf E n=1 (3^n)(x^n) converges absolutely.
 
\(\displaystyle \sum_{n=0}^{\infty}\frac{3^{n}}{x^{n}}\)

Try the ratio test for absolute convergence.

\(\displaystyle {\rho}=\lim_{n\to {\infty}}\left|\frac{u_{k+1}}{u_{k}}\right|=\lim_{n\to {\infty}}\left|\frac{3^{n+1}}{x^{n+1}}\cdot\frac{x^{n}}{3^{n}}\right|=\lim_{n\to \infty}\left|\frac{3}{x}\right|=\left|\frac{3}{x}\right|\)

The ratio test for absolute convergence implies that the series converges absolutely if \(\displaystyle {\rho}=\left|\frac{3}{x}\right|<1\) and

diverges if \(\displaystyle {\rho}=\left|\frac{3}{x}\right|>1\)

Thus, the series converges if \(\displaystyle (-\infty, \;\ -3)\cup (3, \;\ \infty)\)
 
In general, for geometric series,

\(\displaystyle \sum \frac{ca^{n \pm k}}{x^n} = ca^{\pm k}\sum \left (\frac{a}{x} \right )^n\)

converges for \(\displaystyle |x| > a\)

and

\(\displaystyle \sum ca^{n \pm k}x^n\)

converges for \(\displaystyle |x|<\frac{1}{a}\)
 
Top