Converging Absolutely

kiddopop

New member
Joined
Sep 14, 2009
Messages
25
Find all values of x for which the series inf E n=1 (3^n)(x^n) converges absolutely.
 
n=03nxn\displaystyle \sum_{n=0}^{\infty}\frac{3^{n}}{x^{n}}

Try the ratio test for absolute convergence.

ρ=limnuk+1uk=limn3n+1xn+1xn3n=limn3x=3x\displaystyle {\rho}=\lim_{n\to {\infty}}\left|\frac{u_{k+1}}{u_{k}}\right|=\lim_{n\to {\infty}}\left|\frac{3^{n+1}}{x^{n+1}}\cdot\frac{x^{n}}{3^{n}}\right|=\lim_{n\to \infty}\left|\frac{3}{x}\right|=\left|\frac{3}{x}\right|

The ratio test for absolute convergence implies that the series converges absolutely if ρ=3x<1\displaystyle {\rho}=\left|\frac{3}{x}\right|<1 and

diverges if ρ=3x>1\displaystyle {\rho}=\left|\frac{3}{x}\right|>1

Thus, the series converges if (,   3)(3,   )\displaystyle (-\infty, \;\ -3)\cup (3, \;\ \infty)
 
In general, for geometric series,

can±kxn=ca±k(ax)n\displaystyle \sum \frac{ca^{n \pm k}}{x^n} = ca^{\pm k}\sum \left (\frac{a}{x} \right )^n

converges for x>a\displaystyle |x| > a

and

can±kxn\displaystyle \sum ca^{n \pm k}x^n

converges for x<1a\displaystyle |x|<\frac{1}{a}
 
Top