Convergent Series... Stumped

bearej50

New member
Joined
Feb 16, 2009
Messages
21
Give an example of two convergent series ?an, ?bn such that ?(anbn) diverges.
 
bearej50 said:
Give an example of two convergent series ?an, ?bn such that ?(anbn) diverges.

Hmm.... make a[sub:27ywpii6]n[/sub:27ywpii6] and b[sub:27ywpii6]n[/sub:27ywpii6] alternating, maybe?
 
DrMike inspired me . . .\displaystyle \text{DrMike inspired me . . .}


Let: an=(-1)nn3bn=(-1)nn23\displaystyle \text{Let: }\:\sum a_n \:=\:\sum \frac{(\text{-}1)^n}{\sqrt[3]{n}} \qquad \sum b_n \:=\:\sum\frac{(\text{-}1)^n}{\sqrt[3]{n^2}}
\
Both are alternating series whose nth terms 0.\displaystyle \text{Both are alternating series whose }n^{th}\text{ terms }\to 0.
. . Hence, both series converge.\displaystyle \text{Hence, both series converge.}


But the series: anbn=((-1)nn3)((-1)nn23)  =  1n\displaystyle \text{But the series: }\:\sum a_nb_n \:=\:\sum\left(\frac{(\text{-}1)^n}{\sqrt[3]{n}}\right)\left(\frac{(\text{-}1)^n}{\sqrt[3]{n^2}}\right) \;=\;\sum\frac{1}{n}


. . is the divergent Harmonic Series.\displaystyle \text{is the divergent Harmonic Series.}


 
Top