For other viewers, this is the text from the image:
Problem. Determine whether
. . . . .\(\displaystyle \displaystyle{\int_1^3\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}}\)
converges or diverges.
Proof. First, note that this integral is improper because the function has a vertical asymptote at BOTH endpoints so we need to split the integral at some interior point. Then,
. . . . .\(\displaystyle \displaystyle{\int_1^3\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}\, =\, \int_1^2\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}\, +\, \int_2^3\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}}\)
so we will examine each integral separately.
For the second integral, consider that \(\displaystyle \displaystyle{\dfrac{1}{(x\, -\, 1)\sqrt{3\, -\, x}}\, \leq\, \dfrac{1}{2\sqrt{3\, -\, x}}}\) for \(\displaystyle 2\, <\, x\, <\, 3\). Thus,
. . . . .\(\displaystyle \displaystyle{\int_2^3\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}}\)
converges if
. . . . .\(\displaystyle \displaystyle{\int_2^3\, \dfrac{dx}{2\sqrt{3\, -\, x}}}\)
converges. Then we use a \(\displaystyle u\)-substitution with \(\displaystyle u\, =\, 3\, -\, x\) (\(\displaystyle x\, =\, 3\) implies \(\displaystyle u\, =\, 0, x\, =\, 2\) implies \(\displaystyle u\, =\, 1\), and \(\displaystyle -du\, =\, dx\)). So
. . . . .\(\displaystyle \displaystyle{\int_2^3\, \dfrac{dx}{2\sqrt{3\, -\, x}}\, =\, \dfrac{1}{2}\, \int_1^0\, \dfrac{-du}{u^{\frac{1}{2}}}\, =\, \dfrac{1}{2}\, \int_0^1\, \dfrac{du}{u^{\frac{1}{2}}}}\)
which converges by the power rule for proper integrals. Thus the second interval converges.
Now we consider the first integral. Do a \(\displaystyle u\)-substitution with \(\displaystyle u\, =\, x\, -\, 1\) (\(\displaystyle x\, =\, 1\) implies \(\displaystyle u\, =\, 0\), \(\displaystyle x\, =\, 2\) implies \(\displaystyle u\, =\, 1\), and \(\displaystyle du\, =\, dx\).) Thus,
. . . . .\(\displaystyle \displaystyle{\int_1^2\, \dfrac{dx}{(x\, -\, 1)\sqrt{3\, -\, x}}\, =\, \int_0^1\, \dfrac{dx}{u\, \sqrt{2\, -\, u}}}\)
Then, for \(\displaystyle 0\, <\, u\, <\, 1\), we have that \(\displaystyle \dfrac{1}{u\, \sqrt{2\, -\, u}}\, >\, \dfrac{1}{u\, \sqrt{2}}\). Since
. . . . .\(\displaystyle \displaystyle{\int_0^1\, \dfrac{1}{u\, \sqrt{2}}\, =\, \dfrac{1}{\sqrt{2}}\, \int_0^1\, u^{-1}\, du}\)
diverges, we know that
. . . . .\(\displaystyle \displaystyle{\int_0^1\, \dfrac{dx}{u\, \sqrt{2\, -\, u}}}\)
diverges. Thus, the first integral diverges.
Since the first integral diverges and the second integral converges, the entire integral diverges.