hey there.. i'm kinda lost here..
i need to do convergence test for the equation below...
\(\displaystyle y(x)=\frac{1}{\sqrt{2\pi}}\frac{1}{a}\sqrt{\frac{\ pi}{a}}\int_{-\infty}^{\infty} e^{-a|x|}f(x-t)dt\)
however.. i've got 2 value of f(x).. e^x^2 and x^5
how am i going to test them?
should i include my f(x) inside the equation above?
like this...
\(\displaystyle y(x)=\int_{-\infty}^{\infty} e^{-a|x|}f(x-t)^{5}dt\)
and..
\(\displaystyle y(x)=\int_{-\infty}^{\infty} e^{-a|x|}f(e^{(x-t)^{2}})dt\)
please guide me..
i need to do convergence test for the equation below...
\(\displaystyle y(x)=\frac{1}{\sqrt{2\pi}}\frac{1}{a}\sqrt{\frac{\ pi}{a}}\int_{-\infty}^{\infty} e^{-a|x|}f(x-t)dt\)
however.. i've got 2 value of f(x).. e^x^2 and x^5
how am i going to test them?
should i include my f(x) inside the equation above?
like this...
\(\displaystyle y(x)=\int_{-\infty}^{\infty} e^{-a|x|}f(x-t)^{5}dt\)
and..
\(\displaystyle y(x)=\int_{-\infty}^{\infty} e^{-a|x|}f(e^{(x-t)^{2}})dt\)
please guide me..