Hello, iDoof!
I have the general term of a sequence: .\(\displaystyle a_n\;=\;(1\,+\,\frac{3}{n})^{4n}\)
Does it converge or diverge?
Are you familiar with the definition of
e?
. \(\displaystyle \L\lim_{z\to\infty}\left(1\,+\,\frac{1}{z}\right)^z\;=\;e\)
We have:
.\(\displaystyle \left(1\,+\,\frac{3}{n}\right)^{4n}\)
. . Rewrite the fraction:
.\(\displaystyle \frac{3}{n}\:=\:\frac{1}{\frac{n}{3}}\)
. . Multiply the exponent by \(\displaystyle \frac{3}{3}:\;\;4n\cdot\frac{3}{3}\:=\:\left(\frac{n}{3}\right)\cdot12\)
Then we have:
.\(\displaystyle \left(1\,+\,\frac{1}{\frac{n}{3}}\right)^{(\frac{n}{3})(12)}\)
Let \(\displaystyle z\,=\,\frac{n}{3}\).
. Note that, if \(\displaystyle n\to\infty\), then \(\displaystyle z\to\infty\).
. . The limit becomes:
. \(\displaystyle \L\lim_{z\to\infty}\left[\left(1 + \frac{1}{z}\right)^z\right]^{12}\;=\;\left[\lim_{z\to\infty}\left(1\,+\,\frac{1}{z}\right)^z\right]^{12}\;=\;e^{12}\)
\(\displaystyle \L -\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\;-\)
Ha! . . . we had the same idea, galactus!
(You just dropped the "4".)