Conjugate harmonic function

qwesd.211

New member
Joined
Mar 10, 2022
Messages
3
Calculate the conjugate harmonic function in the indicated domains.

u(x,y)=x2y2+x        0z<u(x,y)=x^2-y^2+x\,\,\,\,\,\,\,\,0\leq |z|< \infty
I did this.

ux=2x+1,  uy=2y,  uxx=2,  uyy=2u_x=2x+1, \,\,u_y=-2y,\,\, u_{xx}=2,\,\,u_{yy}=-2
uxx+uyy=022=0u_{xx}+u_{yy}=0\to 2-2=0
2x+1=vy,  2y=vx2x+1=v_y, \,\, -2y=-v_x
v=(2x+1)dyv=2xy+y+g(x)v=\int{(2x+1)dy}\to v=2xy+y+g(x)
vx=2y+g(x)=2yg(x)=2y2yg(x)=(0)dx=Cv_x=2y+g'(x)=2y\therefore g'(x)=2y-2y\to g(x)=\int(0)dx=C
v(x,y)=2xy+y+Cv(x,y)=2xy+y+C
f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)f(z)=(x2y2+x)+i(2xy+y+C)f(z)=(x^2-y^2+x)+i(2xy+y+C)
How do I use the domains?
please help :c
 
Top