Conics in polor form

kaebun

Junior Member
Joined
Sep 11, 2005
Messages
135
r=4/(3cost)\displaystyle r=4/(3-cost) rewrite in Cartesian coordinates i figured out that e= 1/3
and k=4 but I'm not sure how to get a, b, and c
please help!
 
kaebun said:
r=4/(3cost)\displaystyle r=4/(3-cost) rewrite in Cartesian coordinates i figured out that e= 1/3
and k=4 but I'm not sure how to get a, b, and c
please help!
Too bad you have not defined e, k, a, b, or c.

Multiply (3-cos(t)) never is zero (0).

r(3-cos(t)) = 4
3r - r*cos(t) = 4

Substitute x = r*cos(t)
Substitute r = sqrt(x^2 + y^2)

3(sqrt(x^2 + y^2)) - x = 4

See what you can do to make it look more familiar.
 
ok so i put that in standard form
\(\displaystyle 3sqrt(x^2+y^2)-x=4 =
3sqrt(x^2+y^2)=4+x =
9(x^2+y^2)=(4+x)^2 =
9x^2+9y^2=16+8x+x^2 =
8x^2+9y^2-8x=16 =
(x-1)^2/3+y^2/2.67=1\)
this is not the answer in the back of the book
the original equation is in the form r=ek/91ecost\displaystyle r=ek/91-ecost
and I am trying to put itinto the form Ax^2+Bxy+Cy^2+Dx+Ey+F=0 so thats what i ment by finding a,b and c etc
I like your way better, maybe I messed up the algebra?[/quote]
 
Hello, kaebun!

Let's start it over . . .

Write in Cartesian corrdinates: r=43cosθ\displaystyle \,r\:=\:\frac{4}{3\,-\,\cos\theta}
We have: 3rrcosθ  =  4        3r  =  rcosθ+4\displaystyle \,3r\,-\,r\cdot\cos\theta\;=\;4\;\;\Rightarrow\;\;3r\;=\;r\cdot\cos\theta\,+\,4

Then: 3x2+y2  =  x+4\displaystyle \,3\sqrt{x^2\,+\,y^2}\;=\;x\,+\,4

Square: \(\displaystyle \,9(x^2\,+\,y^2}\;=\;x^2\,+\,8x\,+\,16\;\;\Rightarrow\;\;9x^2\,+\,9y^2\;=\;x^2\,+\,8x\,+\,16\)

Hence, we have: \(\displaystyle \L\;8x^2\,+\,9y^2\,-\,8x\,-\,16\;=\;0\)

      A=8,    B=0.    C=9     D=8,    E=0,    F=16\displaystyle \;\;\;A\,=\,8,\;\;B\,=\,0.\;\;C\,=\,9\,\;\;D\,=\,-8,\;\;E\,=\,0,\;\;F\,=\,-16

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

We have: \(\displaystyle \:8x^2\,-\,8x\,+\,9y^2\;=\;16 \;\;\Rightarrow\;\;8(x^2\,-\,x\;\;\;)\,+\,9y^2\;=\;16\)

Complete the square: 8(x2x+14)+9y2  =  16+2\displaystyle \,8\left(x^2\,-\,x\,+\,\frac{1}{4}\right)\,+\,9y^2 \;= \;16\,+\,2

Hence: 8(x12)2+9y2  =  18\displaystyle \:8\left(x\,-\,\frac{1}{2}\right)^2\,+\,9y^2\;=\;18

Divide by 18: \(\displaystyle \L\:\frac{\left(x\,-\,\frac{1}{2}\right)^2}{\frac{9}{4}}\,+\,\frac{y^2}{2}\;=\;1\)

Therefore:   \displaystyle \;Center (12,0),    a=32,    b=2\displaystyle \left(\frac{1}{2},\,0\right),\;\;a\,=\,\frac{3}{2},\;\;b\,=\,\sqrt{2}
 
3x2+y2x=4\displaystyle 3\sqrt{x^2 + y^2} - x = 4
3x2+y2=x+4\displaystyle 3\sqrt{x^2 + y^2} = x + 4
9(x2+y2)=x2+8x+16\displaystyle 9(x^2 + y^2) = x^2 + 8x + 16
8x2+9y28x16=0\displaystyle 8x^2 + 9y^2 - 8x - 16 = 0
is that what you're looking for?


complete the square ...

8(x2x+14)+9y2=16+2\displaystyle 8(x^2 - x + \frac{1}{4}) + 9y^2 = 16 + 2
8(x12)2+9y2=18\displaystyle 8(x - \frac{1}{2})^2 + 9y^2 = 18
4(x12)29+y22=1\displaystyle \frac{4(x - \frac{1}{2})^2}{9} + \frac{y^2}{2} = 1

and you get the ellipse centered at (12,0)\displaystyle (\frac{1}{2}, 0) with
a=32\displaystyle a = \frac{3}{2} and b=2\displaystyle b = \sqrt{2}

Soroban beat me ... still getting used to the Latex
 
kaebun said:
ok so i put that in standard form
\(\displaystyle 3sqrt(x^2+y^2)-x=4 =
3sqrt(x^2+y^2)=4+x =
9(x^2+y^2)=(4+x)^2 =
9x^2+9y^2=16+8x+x^2 =
8x^2+9y^2-8x=16 =
(x-1)^2/3+y^2/2.67=1\)
Whatever that means -- never write it again. Yikes!
 
ohhhhhhhhhhhh i messed up completeing the square apparently 1/2= 1 in my brain ;) i feel dumb now
 
Top