Hello, kaebun!
Let's start it over . . .
Write in Cartesian corrdinates: \(\displaystyle \,r\:=\:\frac{4}{3\,-\,\cos\theta}\)
We have: \(\displaystyle \,3r\,-\,r\cdot\cos\theta\;=\;4\;\;\Rightarrow\;\;3r\;=\;r\cdot\cos\theta\,+\,4\)
Then: \(\displaystyle \,3\sqrt{x^2\,+\,y^2}\;=\;x\,+\,4\)
Square: \(\displaystyle \,9(x^2\,+\,y^2}\;=\;x^2\,+\,8x\,+\,16\;\;\Rightarrow\;\;9x^2\,+\,9y^2\;=\;x^2\,+\,8x\,+\,16\)
Hence, we have: \(\displaystyle \L\;8x^2\,+\,9y^2\,-\,8x\,-\,16\;=\;0\)
\(\displaystyle \;\;\;A\,=\,8,\;\;B\,=\,0.\;\;C\,=\,9\,\;\;D\,=\,-8,\;\;E\,=\,0,\;\;F\,=\,-16\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
We have: \(\displaystyle \:8x^2\,-\,8x\,+\,9y^2\;=\;16 \;\;\Rightarrow\;\;8(x^2\,-\,x\;\;\
\,+\,9y^2\;=\;16\)
Complete the square: \(\displaystyle \,8\left(x^2\,-\,x\,+\,\frac{1}{4}\right)\,+\,9y^2 \;= \;16\,+\,2\)
Hence: \(\displaystyle \:8\left(x\,-\,\frac{1}{2}\right)^2\,+\,9y^2\;=\;18\)
Divide by 18: \(\displaystyle \L\:\frac{\left(x\,-\,\frac{1}{2}\right)^2}{\frac{9}{4}}\,+\,\frac{y^2}{2}\;=\;1\)
Therefore: \(\displaystyle \;\)Center \(\displaystyle \left(\frac{1}{2},\,0\right),\;\;a\,=\,\frac{3}{2},\;\;b\,=\,\sqrt{2}\)