\(\displaystyle \sqrt{3a} \;+\; 3 \cdot \sqrt{75a^3}\)
\(\displaystyle \sqrt{3a} \;+\; 3 \cdot \sqrt{3 \cdot 5 \cdot 5 \cdot a \cdot a \cdot a}\)
\(\displaystyle \sqrt{3a} \;+\; 3 \cdot \sqrt{3} \cdot \sqrt{5^2} \cdot \sqrt{a} \cdot \sqrt{a^2}\)
\(\displaystyle \sqrt{3a} \;+\; 3 \cdot \sqrt{3} \cdot 5 \cdot \sqrt{a} \cdot |a|\)
\(\displaystyle \sqrt{3a} \;+\; 3 \cdot 5 \cdot |a| \cdot \sqrt{3} \cdot \sqrt{a}\)
\(\displaystyle \sqrt{3a} \;+\; 15 \cdot |a| \cdot \sqrt{3a}\)
Now you have two like-terms. Add them.
By the way, if your math class indicates that the symbol a represents a positive number, then you can drop the absolute-value symbols.