confirmation

spacewater

Junior Member
Joined
Jul 10, 2009
Messages
67
\(\displaystyle \sqrt{-6} \cdot \sqrt{-2)\)
12\displaystyle \sqrt{-12}

my question is that
23=23\displaystyle -2\sqrt{3} = 2\sqrt{-3}??
 
spacewater said:
\(\displaystyle \sqrt{-6} \cdot \sqrt{-2)\)
12\displaystyle \sqrt{-12}
my question is that
23=23\displaystyle -2\sqrt{3} = 2\sqrt{-3}??
This makes no sense whatsoever.
Neither 6 nor 2\displaystyle \sqrt{-6}\text{ nor }\sqrt{-2} is defined.
So the whole question is ill-defined.
 
When you get involved with imaginary numbers translate them to i form first, then do the computation.

53=(5)(3)=15\displaystyle \sqrt{-5}\cdot \sqrt{-3} = \sqrt{(-5)\cdot(-3)}=\sqrt{15} <<< WRONG!

53=i5i3=i215=(1)15=15\displaystyle \sqrt{-5}\cdot \sqrt{-3} = i\sqrt{5}\cdot i\sqrt{3} = i^2\sqrt{15}= (-1)\sqrt{15}= -\sqrt{15} <<< CORRECT

Re your question...

23=2i323\displaystyle 2\sqrt{-3}=2i\sqrt{3} \ne -2\sqrt{3}
 
Top