conditions on Matrix elements

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,526
Let A\displaystyle \mathcal{A} be the set of 2×2\displaystyle 2 \times 2 matrices with real number entries. Recall that matrix multiplication is defined by

[abcd][pqrs]=[ap+braq+bscp+drcq+ds]\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}

Let M=[1101]\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}

and let B={XA  MX=XM}\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}

Find conditions on p,q,r,s\displaystyle p, q, r, s which determine precisely when [pqrs]B\displaystyle \begin{bmatrix}p & q \\r & s \end{bmatrix} \in \mathcal{B}.
 
Let A\displaystyle \mathcal{A} be the set of 2×2\displaystyle 2 \times 2 matrices with real number entries. Recall that matrix multiplication is defined by

[abcd][pqrs]=[ap+braq+bscp+drcq+ds]\displaystyle \begin{bmatrix}a & b \\c & d \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}ap + br & aq + bs \\cp + dr & cq + ds \end{bmatrix}

Let M=[1101]\displaystyle M = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix}

and let B={XA  MX=XM}\displaystyle \mathcal{B} = \{X \in \mathcal{A} \ | \ MX = XM\}

Find conditions on p,q,r,s\displaystyle p, q, r, s which determine precisely when [pqrs]B\displaystyle \begin{bmatrix}p & q \\r & s \end{bmatrix} \in \mathcal{B}.
show us your effort/s to solve this problem.
 
M[pqrs]=[1101][pqrs]=[p+rq+srs]\displaystyle M\begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix} \begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}p + r & q + s \\r & s \end{bmatrix}


[pqrs]M=[pqrs][1101]=[pp+qrr+s]\displaystyle \begin{bmatrix}p & q \\r & s \end{bmatrix}M = \begin{bmatrix}p & q \\r & s \end{bmatrix} \begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix} = \begin{bmatrix}p & p + q \\r & r + s \end{bmatrix}

We want:

M[pqrs]=[pqrs]M\displaystyle M\begin{bmatrix}p & q \\r & s \end{bmatrix} = \begin{bmatrix}p & q \\r & s \end{bmatrix}M

Then,

[p+rq+srs]=[pp+qrr+s]\displaystyle \begin{bmatrix}p + r & q + s \\r & s \end{bmatrix} = \begin{bmatrix}p & p + q \\r & r + s \end{bmatrix}

p+r=p\displaystyle p + r = p, means r=0\displaystyle r = 0
q+s=p+q\displaystyle q + s = p + q, means s=p\displaystyle s = p

These are the conditions to let [pqrs]B\displaystyle \begin{bmatrix}p & q \\r & s \end{bmatrix} \in \mathcal{B}.
 
Top