Hello, ezrajoelmicah!
My answers agree with pka's MathCad answers.
Find all critical points of:
f(x)=x2(6−x2)21
Then find any points of inflection and describe the concavity of the function.
We have:
f(x)=x2(6−x2)21
Then:
f′(x)=x2⋅21⋅(6−x2)−21⋅(−2x)+2x⋅(6−x2)21
Simplify:
f;(x)=−x3(6−x2)−21+2x(6−x2)21
Factor:
f′(x)=−(6−x2)−21⋅[x3−2x(6−x2)]
. . . . . . f′(x)=−(6−x2)−21[3x3−12x]
Factor:
f′(x)=−(6−x2)−21⋅3⋅(x3−4x)
. . . . . . \(\displaystyle f'(x)\;=\;-3(6\,-\,x^2)^{-\frac{1}{2}}(x^3\,-\,4x)\;\;\Rightarrow\;\;\L\frac{-3(x^3\,-\,4x)}{\sqrt{6\,-\,x^2}}\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
We have:
f′(x)=−3(x2−4x)(6−x2)−21
Then:
f′′(x)=−3[(x3−4x)⋅(−21)(6−x2)−23⋅(−2x)+(3x2−4)(6−x2)−21]
. . . . . . f′′(x)=−3[x(x3−4x)(6−x2)−23+(3x2−4)(6−x2)−21]
Factor:
f′′(x)=−3(6−x2)−23⋅[x(x3−4x)+(3x2−4)(6−x2)]
Simplify:
f′′(x)=−3(6−x2)−23⋅(−2x4+18x2−24)
Factor:
f′′(x)=−3(6−x2)−23⋅(−2)(x4−9x2+12)
. . . . \(\displaystyle f''(x)\;=\;6(6\,-\,x^2)^{-\frac{3}{2}}(x^4\,-\,9x^2\,+\,12)\;\;\Rightarrow\;\;\L\frac{6(x^4\,-\,9x^2\,+\,12)}{(6\,-\,x^2)^{\frac{3}{2}}}\)