Hello, ezrajoelmicah!
My answers agree with pka's MathCad answers.
Find all critical points of: \(\displaystyle \,f(x)\:=\:x^2(6\,-\,x^2)^{\frac{1}{2}}\)
Then find any points of inflection and describe the concavity of the function.
We have: \(\displaystyle \,f(x)\;=\;x^2(6\,-\,x^2)^{\frac{1}{2}}\)
Then: \(\displaystyle \,f'(x)\;=\;x^2\cdot\frac{1}{2}\cdot(6\,-\,x^2)^{-\frac{1}{2}}\cdot(-2x)\,+\,2x\cdot(6\,-\,x^2)^{\frac{1}{2}}\)
Simplify: \(\displaystyle \,f;(x)\;= \;-x^3(6\,-\,x^2)^{-\frac{1}{2}}\,+\,2x(6\,-\,x^2)^{\frac{1}{2}}\)
Factor: \(\displaystyle \,f'(x)\;=\;-(6\,-\,x^2)^{-\frac{1}{2}}\cdot\left[x^3\,-\,2x(6\,-\,x^2)\right]\)
. . . . . . \(\displaystyle f'(x)\;= \;-(6\,-\,x^2)^{-\frac{1}{2}}[3x^3\,-\,12x]\)
Factor: \(\displaystyle \,f'(x)\;=\;-(6\,-\,x^2)^{-\frac{1}{2}}\cdot3\cdot(x^3\,-\,4x)\)
. . . . . . \(\displaystyle f'(x)\;=\;-3(6\,-\,x^2)^{-\frac{1}{2}}(x^3\,-\,4x)\;\;\Rightarrow\;\;\L\frac{-3(x^3\,-\,4x)}{\sqrt{6\,-\,x^2}}\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
We have: \(\displaystyle \,f'(x)\;= \;-3(x^2\,-\,4x)(6\,-\,x^2)^{-\frac{1}{2}}\)
Then: \(\displaystyle \,f''(x) \;= \;-3\left[(x^3\,-\,4x)\cdot\left(-\frac{1}{2}\right)(6\,-\,x^2)^{-\frac{3}{2}}\cdot(-2x)\,+\,(3x^2\,-\,4)(6\,-\,x^2)^{-\frac{1}{2}}\right]\)
. . . . . . \(\displaystyle f''(x)\;=\;-3\left[x(x^3\,-\,4x)(6\,-\,x^2)^{-\frac{3}{2}} \,+ \,(3x^2\,-\,4)(6\,-\,x^2)^{-\frac{1}{2}}\right]\)
Factor: \(\displaystyle \,f''(x) \;= \;-3(6\,-\,x^2)^{-\frac{3}{2}}\cdot\left[x(x^3\,-\,4x) \,+\,(3x^2\,-\,4)(6\,-\,x^2)\right]\)
Simplify: \(\displaystyle \,f''(x)\;=\;-3(6\,-\,x^2)^{-\frac{3}{2}}\cdot(-2x^4\,+\,18x^2\,-\,24)\)
Factor: \(\displaystyle \,f''(x)\;=\;-3(6\,-\,x^2)^{-\frac{3}{2}}\cdot(-2)(x^4\,-\,9x^2\,+\,12)\)
. . . . \(\displaystyle f''(x)\;=\;6(6\,-\,x^2)^{-\frac{3}{2}}(x^4\,-\,9x^2\,+\,12)\;\;\Rightarrow\;\;\L\frac{6(x^4\,-\,9x^2\,+\,12)}{(6\,-\,x^2)^{\frac{3}{2}}}\)