Mark Cheung
New member
- Joined
- Oct 23, 2019
- Messages
- 2
Given that u(w) is a concave function, and that u(w) ≥ 0.5u(w − 10) + 0.5u(w + 15) ,
1.) Prove, for any k≥1,
u(w+ 24 × k +1) − u(w+ 24 × k) ≤ 10 [u(w+ 24 × (k − 1) +1) − u(w+ 24 × (k − 1))] /15
2.) Hence show that for any fixed w, and any M > w, we have
u( w + M) − u( w ) < 72 [u( w + 1) − u( w)].
3.) Hence, prove
u(w) > 0.5u(w-72) + 0.5 u(w + M)
1.) Prove, for any k≥1,
u(w+ 24 × k +1) − u(w+ 24 × k) ≤ 10 [u(w+ 24 × (k − 1) +1) − u(w+ 24 × (k − 1))] /15
2.) Hence show that for any fixed w, and any M > w, we have
u( w + M) − u( w ) < 72 [u( w + 1) − u( w)].
3.) Hence, prove
u(w) > 0.5u(w-72) + 0.5 u(w + M)