logistic_guy
Full Member
- Joined
- Apr 17, 2024
- Messages
- 669
here is the question
Find the compositions \(\displaystyle f \circ g\) and \(\displaystyle g \circ f\), and identify their respective domains.
6. \(\displaystyle f(x) = \frac{1}{x^2 - 1}, \ \ g(x) = x^2 - 2\)
my attemb
\(\displaystyle f \circ g = f(g(x)) = \frac{1}{(x^2 - 2)^2 - 1} = \frac{1}{x^4 - 4x^2 + 3}\)
Domain: \(\displaystyle (-\infty,-\sqrt{3}) U (-\sqrt{3}, -1) U (-1, 1) U (1, \sqrt{3}) U (\sqrt{3},\infty)\)
\(\displaystyle g \circ f = g(f(x)) = (\frac{1}{x^2 - 1})^2 - 2 = \frac{1}{x^4 - 2x^2 + 1} - 2\)
Domain: \(\displaystyle (-\infty,-1) U (-1,1) U (1,\infty)\)
is my analize correct?
Find the compositions \(\displaystyle f \circ g\) and \(\displaystyle g \circ f\), and identify their respective domains.
6. \(\displaystyle f(x) = \frac{1}{x^2 - 1}, \ \ g(x) = x^2 - 2\)
my attemb
\(\displaystyle f \circ g = f(g(x)) = \frac{1}{(x^2 - 2)^2 - 1} = \frac{1}{x^4 - 4x^2 + 3}\)
Domain: \(\displaystyle (-\infty,-\sqrt{3}) U (-\sqrt{3}, -1) U (-1, 1) U (1, \sqrt{3}) U (\sqrt{3},\infty)\)
\(\displaystyle g \circ f = g(f(x)) = (\frac{1}{x^2 - 1})^2 - 2 = \frac{1}{x^4 - 2x^2 + 1} - 2\)
Domain: \(\displaystyle (-\infty,-1) U (-1,1) U (1,\infty)\)
is my analize correct?