composition functions - treatment 5

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,529
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

5. f(x)=x2+1,  g(x)=sinx\displaystyle f(x) = x^2 + 1, \ \ g(x) = \sin x


my attemb
fg=f(g(x))=sin2x+1\displaystyle f \circ g = f(g(x)) =\sin^2 x + 1
Domain: (,)\displaystyle (-\infty,\infty)

gf=g(f(x))=sin(x2+1)\displaystyle g \circ f = g(f(x)) = \sin(x^2 + 1)
Domain: (,)\displaystyle (-\infty,\infty)

is my analize correct?😣
 
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

5. f(x)=x2+1,  g(x)=sinx\displaystyle f(x) = x^2 + 1, \ \ g(x) = \sin x


my attemb
fg=f(g(x))=sin2x+1\displaystyle f \circ g = f(g(x)) =\sin^2 x + 1
Domain: (,)\displaystyle (-\infty,\infty)

gf=g(f(x))=sin(x2+1)\displaystyle g \circ f = g(f(x)) = \sin(x^2 + 1)
Domain: (,)\displaystyle (-\infty,\infty)

is my analize correct?😣
Did you graph these?

-Dan
 
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

5. f(x)=x2+1,  g(x)=sinx\displaystyle f(x) = x^2 + 1, \ \ g(x) = \sin x


my attemb
fg=f(g(x))=sin2x+1\displaystyle f \circ g = f(g(x)) =\sin^2 x + 1
Domain: (,)\displaystyle (-\infty,\infty)

gf=g(f(x))=sin(x2+1)\displaystyle g \circ f = g(f(x)) = \sin(x^2 + 1)
Domain: (,)\displaystyle (-\infty,\infty)

is my analize correct?😣
Then your analysis is correct.
 
Top