composition functions - treatment 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,529
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

2. f(x)=x2,  g(x)=x+1\displaystyle f(x) = x - 2, \ \ g(x) = \sqrt{x + 1}


my attemb
fg=f(g(x))=x+12\displaystyle f \circ g = f(g(x)) = \sqrt{x + 1} - 2
Domain: x1\displaystyle x \geq - 1

gf=g(f(x))=x2+1=x1\displaystyle g \circ f = g(f(x)) = \sqrt{x - 2 + 1} = \sqrt{x - 1}
Domain: x1\displaystyle x \geq 1

is my analize correct?😣
 
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

2. f(x)=x2,  g(x)=x+1\displaystyle f(x) = x - 2, \ \ g(x) = \sqrt{x + 1}


my attemb
fg=f(g(x))=x+12\displaystyle f \circ g = f(g(x)) = \sqrt{x + 1} - 2
Domain: x1\displaystyle x \geq - 1

gf=g(f(x))=x2+1=x1\displaystyle g \circ f = g(f(x)) = \sqrt{x - 2 + 1} = \sqrt{x - 1}
Domain: x1\displaystyle x \geq 1

is my analize correct?😣
Yes.

-Dan
 
Beer induced reaction follows.
here is the question

Find the compositions fg\displaystyle f \circ g and gf\displaystyle g \circ f, and identify their respective domains.

2. f(x)=x2,  g(x)=x+1\displaystyle f(x) = x - 2, \ \ g(x) = \sqrt{x + 1}


my attemb
fg=f(g(x))=x+12\displaystyle f \circ g = f(g(x)) = \sqrt{x + 1} - 2
Domain: x1\displaystyle x \geq - 1

gf=g(f(x))=x2+1=x1\displaystyle g \circ f = g(f(x)) = \sqrt{x - 2 + 1} = \sqrt{x - 1}
Domain: x1\displaystyle x \geq 1

is my analize correct?😣
 
Top