composite rule and derivative question

nil101

New member
Joined
Oct 16, 2005
Messages
37
Please can you help with this one?

Use the composite rule(chain rule) to show that the function

\(\displaystyle \ h(x) = \ln (x + \sqrt {x^2 {\rm - }1{\rm }} {\rm ) }(x > 1)
\\)

has derivative

\(\displaystyle \
h'(x) = \frac{1}{{\sqrt {x^2 - 1} }}
\\) ?


Thanks for looking.
 
Hello, nil101!

Use the composite rule to show that the function
. . \(\displaystyle h(x) \:=\: \ln\left(x\,+\,\sqrt{x^2 \,-\,1}\right),\;x\,>\.1\)

has derivative: \(\displaystyle \:h'(x) \:=\:\frac{1}{{\sqrt {x^2\,-\,1}}\)

We have: \(\displaystyle \:h(x) \;=\;\ln\left[x\,+\,(x^2\,-\,1)^{\frac{1}{2}}\right]\)


Using the composite rule (chain rule), we have:

\(\displaystyle \L h'(x)\;=\;\frac{1}{x\,+\,\left(x^2\,-\,1\right)^{\frac{1}{2}}} \,\cdot\,\left[1\,+\,\frac{1}{2}(x^2\,-\,1)^{-\frac{1}{2}}\cdot\,2x\right]\)

. . \(\displaystyle \L=\;\frac{1}{x\,+\,\sqrt{x^2\,-\,1}}\cdot\left[1\,+\,\frac{x}{\sqrt{x^2\,-\,1}}\right]\)

. . \(\displaystyle \L=\;\frac{1}{x\,+\,\sqrt{x^2\,-\,1}}\cdot\left[\frac{\sqrt{x^2\,-\,1}\,+\,x}{\sqrt{x^2\,-\,1}}\right]\)

. . \(\displaystyle \L= \;\frac{1}{\sout{x\,+\,\sqrt{x^2\,-\,1}}}\,\cdot\frac{\sout{x\,+\,\sqrt{x^2\,-\,1}}}{\sqrt{x^2\,-\,1}}\)

. . \(\displaystyle \L=\;\frac{1}{\sqrt{x^2\,-\,1}}\)


 
Top