The z = z bar is not a general truth. It is a special case, and you are to find the complex numbers for which it is true.
The definition of z bar, or the conjugate of z, is
[MATH]z = a + bi \iff \bar z = a - bi.[/MATH]
[MATH]\text {THEREFORE, } z = a + bi \text { and }\bar z = z^2\implies[/MATH]
[MATH]a - bi = (a + bi)^2 = a^2 - b^2 + 2abi.[/MATH] One of the identities I showed you yesterday.
[MATH]a - bi = = a^2 - b^2 + 2abi \implies a = a^2 - b^2 \text { and } -\ b = 2ab.[/MATH]
[MATH]b= 0 \implies a = a^2 - 0^2 = a^2 \implies a^2 - a = 0 \implies[/MATH]
[MATH]a^2 - a = 0 \implies a(a - 1) = 0 \implies a = 0 \text { or } a = 1.[/MATH]
So two answers are (1) z = 0 + 0i, and (2) z = 1 + 0i. These are the same as the real numbers 0 and 1. looks good because z and its conjugate are the same whenever b = 0, and only 1 and 0 in the real numbers equal their squares.
[MATH]b \ne 0 \text { and } -\ b = 2ab \implies -\ 1 = 2a \implies a =\ - \dfrac{1}{2}.[/MATH]
[MATH]a = -\ \dfrac{1}{2} \text { and } a = a^2 - b^2 \implies[/MATH]
[MATH]b^2 = a - a^2 = -\ \dfrac{1}{2} - \left ( -\ \dfrac{1}{2} \right )^2 = -\ \dfrac{2}{4} - \dfrac{1}{4} = (-\ 1) * \dfrac{3}{2^2} \implies[/MATH]
[MATH]b = \pm \dfrac{i\sqrt{3}}{2}.[/MATH]
So we get two more answers: (3) -(1/2) + (i * sqrt(3))/2, and (4) -(1/2) - (i * sqrt(3))/2. Let's check those out.
To do so, we need another identity.
[MATH]z = a - bi \implies z^2 = a^2 - 2abi + (-\ bi)^2 = a^2 + b^2(i^2) - 2abi = a^2 - b^2 - 2abi.[/MATH]
[MATH]z = -\ \dfrac{1}{2} + \dfrac{i\sqrt{3}}{2} \implies \bar z = -\ \dfrac{1}{2} - \dfrac{i\sqrt{3}}{2} \text { and}[/MATH]
[MATH]z^2 = \left (-\ \dfrac{1}{2} \right)^2 - \left ( \dfrac{\sqrt{3}}{2} \right )^2 + 2 * \left ( -\ \dfrac{1}{2} \right ) * \dfrac{i \sqrt{3}}{2} \implies [/MATH]
[MATH]z^2 = \dfrac{1}{4} - \dfrac{3}{4} - \dfrac{i \sqrt{3}}{2} = -\ \dfrac{1}{2} - \dfrac{i \sqrt{3}}{2} = \bar z. [/MATH]
[MATH]z = -\ \dfrac{1}{2} - \dfrac{i\sqrt{3}}{2} \implies \bar z = -\ \dfrac{1}{2} + \dfrac{i\sqrt{3}}{2} \text { and}[/MATH]
[MATH]z^2 = \left (-\ \dfrac{1}{2} \right)^2 - \left (-\ \dfrac{\sqrt{3}}{2} \right )^2 - 2 * \left ( -\ \dfrac{1}{2} \right ) * \dfrac{i \sqrt{3}}{2} \implies [/MATH]
[MATH]z^2 = \dfrac{1}{4} - \dfrac{3}{4} + \dfrac{i \sqrt{3}}{2} = -\ \dfrac{1}{2} + \dfrac{i \sqrt{3}}{2} = \bar z. [/MATH]
There is nothing deep here. Remember the identities I told you yesterday and watch out for the signs.