Complex Integrals

monomocoso

New member
Joined
Jan 25, 2012
Messages
31
Show
\(\displaystyle
\int^\infty_0 sin {x^{2n}}\,dx = sin {\frac {\pi} {4n}}I_n \)

and
\(\displaystyle
\int^\infty_0 cos {x^{2n}}\,dx = cos {\frac {\pi}{4n}}I_n \)

where

\(\displaystyle I_n = \int^\infty_0 exp {-x^{2n}}\,dx\)
 
\(\displaystyle \displaystyle \int_{0}^{\infty}sin(x^{2n})dx=sin(\frac{\pi}{4n})\int_{0}^{\infty}e^{-x^{2n}}dx\)

Let \(\displaystyle 2n=p\)

\(\displaystyle \displaystyle \int_{0}^{\infty}sin(x^{p})dx\)

Then, using imaginary parts:

\(\displaystyle -\displaystyle \int_{0}^{\infty}e^{-ix^{p}}dx\)

Let \(\displaystyle x=t\cdot i^{-1/p}, \;\ dx=i^{-1/p}dt=-sin(\frac{\pi}{2p})\)

\(\displaystyle -i^{-1/p}\displaystyle \int_{0}^{\infty}e^{-t^{p}}dt\)

Let \(\displaystyle u=t^{p}\)

\(\displaystyle \frac{-1}{p} i^{-1/p}\displaystyle \int_{0}^{\infty}u^{\frac{1}{p}-1}e^{-u}du\)

\(\displaystyle =\frac{1}{p}\Gamma(1/p)sin(\frac{\pi}{2p})\)

\(\displaystyle =\Gamma(1+\frac{1}{p})sin(\frac{\pi}{2p})\)

Now, resub \(\displaystyle p=2n\) and we get:

\(\displaystyle sin(\frac{\pi}{2n})\Gamma(1+\frac{1}{2n})\)

Now, use the fact that \(\displaystyle \displaystyle \int_{0}^{\infty}e^{-x^{2n}}dx=\Gamma(1+\frac{1}{2n})\)

This last identity comes from an alternative defintion of Gamma:

\(\displaystyle \Gamma(n)=\displaystyle 2\int_{0}^{\infty}x^{2n-1}e^{-x^{2}}dx\)
 
Last edited:
Top