Calculate
[math]\left ( \bar{z} \right )^4=4z[/math]I tried this, but i don't know if it's correct
[math](x-iy)^{4}=4(x+iy)[/math][math](x-iy)=(4x+4iy)^{\frac{1}{4}}[/math][math]r=\sqrt{4^2+4^2}=\sqrt{32}[/math][math]\theta=\arctan (\frac{4}{4})=\frac{\pi}{4}[/math][math]k=0,w_0=(\sqrt{32})^\frac{1}{4} [\cos \frac{\frac{\pi}{4}+2\pi(0))}{4}+i\sin \frac{\frac{\pi}{4}+2\pi(0))}{4}][/math][math]=\left(\sqrt{32}\right)^\frac{1}{4}\left[\cos \frac{\pi}{16}+i\sin \frac{\pi}{16}\right]=1.512+3.008i[/math]Please help. :c
[math]\left ( \bar{z} \right )^4=4z[/math]I tried this, but i don't know if it's correct
[math](x-iy)^{4}=4(x+iy)[/math][math](x-iy)=(4x+4iy)^{\frac{1}{4}}[/math][math]r=\sqrt{4^2+4^2}=\sqrt{32}[/math][math]\theta=\arctan (\frac{4}{4})=\frac{\pi}{4}[/math][math]k=0,w_0=(\sqrt{32})^\frac{1}{4} [\cos \frac{\frac{\pi}{4}+2\pi(0))}{4}+i\sin \frac{\frac{\pi}{4}+2\pi(0))}{4}][/math][math]=\left(\sqrt{32}\right)^\frac{1}{4}\left[\cos \frac{\pi}{16}+i\sin \frac{\pi}{16}\right]=1.512+3.008i[/math]Please help. :c