complex analysis is life - 5

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,610
Solve.

Cπeπz dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz

where C\displaystyle C is the path that goes from 0\displaystyle 0 to 1\displaystyle 1, then from 1\displaystyle 1 to 1+i\displaystyle 1 + i, then from 1+i\displaystyle 1 + i to i\displaystyle i, then from i\displaystyle i to 0\displaystyle 0.
 
This is just a combination of all the paths (contours) that we have solved in the previous exercises.

Then,

Cπeπz dz=C1πeπz dz+C2πeπz dz+C3πeπz dz+C4πeπz dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz = \int_{C_1} \pi e^{\pi \overline{z}} \ dz + \int_{C_2} \pi e^{\pi \overline{z}} \ dz + \int_{C_3} \pi e^{\pi \overline{z}} \ dz + \int_{C_4} \pi e^{\pi \overline{z}} \ dz


=(eπ1)+(2eπ)+(eπ1)+(2)\displaystyle = \large (e^{\pi} - 1) + (2e^{\pi}) + (e^{\pi} - 1) + (-2)


=eπ1+2eπ+eπ12\displaystyle = \large e^{\pi} - 1 + 2e^{\pi} + e^{\pi} - 1 - 2


=4eπ4\displaystyle = \large 4e^{\pi} - 4


=4(eπ1)\displaystyle = \large 4(e^{\pi} - 1)
 
Top