complex analysis is life - 4

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,610
Solve.

Cπeπz dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz

where C\displaystyle C is the path that goes from i\displaystyle i to 0\displaystyle 0.
 
We have:

z=x+iy\displaystyle z = x + iy
z=xiy\displaystyle \overline{z} = x - iy

By observing the path, we see that x=0\displaystyle x = 0, then we have:

z=iy\displaystyle z = iy
z=iy\displaystyle \overline{z} = -iy

This gives us the integral:

10πeiπy idy\displaystyle \large \int_{1}^{0} \pi e^{-i\pi y} \ i dy
 
10πeiπy idy\displaystyle \large \int_{1}^{0} \pi e^{-i\pi y} \ i dy
Let us solve this bastard integral.

iπ10eiπy dy=eiπy10=(1eiπ)=eiπ1=cosπisinπ1=11=2\displaystyle \large i\pi\int_{1}^{0} e^{-i\pi y} \ dy = -e^{-i\pi y}\bigg |_{1}^{0} = -(1 - e^{-i\pi}) = e^{-i\pi} - 1 = \cos \pi - i\sin \pi - 1 = -1 - 1 = -2
 
Top