Solve. \large \int_C \pi e^{\pi \overline{z}} \ dz where C is the path that goes from 1 to 1 + i.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #1 Solve. ∫Cπeπz‾ dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz∫Cπeπz dz where C\displaystyle CC is the path that goes from 1\displaystyle 11 to 1+i\displaystyle 1 + i1+i.
Solve. ∫Cπeπz‾ dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz∫Cπeπz dz where C\displaystyle CC is the path that goes from 1\displaystyle 11 to 1+i\displaystyle 1 + i1+i.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #2 In the previous exercise we have seen that z=x+iy\displaystyle z = x + iyz=x+iy and z‾=x−iy\displaystyle \overline{z} = x - iyz=x−iy. The path tells us that x=1\displaystyle x = 1x=1. Then, we have: z=1+iy\displaystyle z = 1 + iyz=1+iy And z‾=1−iy\displaystyle \overline{z} = 1 - iyz=1−iy This reduces our integral to: ∫01πeπ(1−iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy∫01πeπ(1−iy) idy
In the previous exercise we have seen that z=x+iy\displaystyle z = x + iyz=x+iy and z‾=x−iy\displaystyle \overline{z} = x - iyz=x−iy. The path tells us that x=1\displaystyle x = 1x=1. Then, we have: z=1+iy\displaystyle z = 1 + iyz=1+iy And z‾=1−iy\displaystyle \overline{z} = 1 - iyz=1−iy This reduces our integral to: ∫01πeπ(1−iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy∫01πeπ(1−iy) idy
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #3 logistic_guy said: ∫01πeπ(1−iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy∫01πeπ(1−iy) idy Click to expand... Let us try to solve this nasty integral. ∫01πeπ(1−iy) idy=iπeπ∫01e−iπy dy=−eπe−iπy∣01\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy = i\pi e^{\pi}\int_{0}^{1} e^{-i\pi y} \ dy = -e^{\pi}e^{-i\pi y}\bigg |_{0}^{1}∫01πeπ(1−iy) idy=iπeπ∫01e−iπy dy=−eπe−iπy∣∣∣∣∣01 =−eπ(e−iπ−1)=−eπ(cosπ−isinπ−1)=−eπ(−2)=2eπ\displaystyle = -e^{\pi}(e^{-i\pi} - 1) = -e^{\pi}(\cos \pi - i\sin \pi - 1) = -e^{\pi}(-2) = 2e^{\pi}=−eπ(e−iπ−1)=−eπ(cosπ−isinπ−1)=−eπ(−2)=2eπ
logistic_guy said: ∫01πeπ(1−iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy∫01πeπ(1−iy) idy Click to expand... Let us try to solve this nasty integral. ∫01πeπ(1−iy) idy=iπeπ∫01e−iπy dy=−eπe−iπy∣01\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy = i\pi e^{\pi}\int_{0}^{1} e^{-i\pi y} \ dy = -e^{\pi}e^{-i\pi y}\bigg |_{0}^{1}∫01πeπ(1−iy) idy=iπeπ∫01e−iπy dy=−eπe−iπy∣∣∣∣∣01 =−eπ(e−iπ−1)=−eπ(cosπ−isinπ−1)=−eπ(−2)=2eπ\displaystyle = -e^{\pi}(e^{-i\pi} - 1) = -e^{\pi}(\cos \pi - i\sin \pi - 1) = -e^{\pi}(-2) = 2e^{\pi}=−eπ(e−iπ−1)=−eπ(cosπ−isinπ−1)=−eπ(−2)=2eπ