complex analysis is life - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,617
Solve.

Cπeπz dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz

where C\displaystyle C is the path that goes from 1\displaystyle 1 to 1+i\displaystyle 1 + i.
 
In the previous exercise we have seen that z=x+iy\displaystyle z = x + iy and z=xiy\displaystyle \overline{z} = x - iy.

The path tells us that x=1\displaystyle x = 1.

Then, we have:

z=1+iy\displaystyle z = 1 + iy

And

z=1iy\displaystyle \overline{z} = 1 - iy

This reduces our integral to:

01πeπ(1iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy
 
01πeπ(1iy) idy\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy
Let us try to solve this nasty integral.

01πeπ(1iy) idy=iπeπ01eiπy dy=eπeiπy01\displaystyle \large \int_0^{1} \pi e^{\pi(1 - iy)} \ idy = i\pi e^{\pi}\int_{0}^{1} e^{-i\pi y} \ dy = -e^{\pi}e^{-i\pi y}\bigg |_{0}^{1}


=eπ(eiπ1)=eπ(cosπisinπ1)=eπ(2)=2eπ\displaystyle = -e^{\pi}(e^{-i\pi} - 1) = -e^{\pi}(\cos \pi - i\sin \pi - 1) = -e^{\pi}(-2) = 2e^{\pi}
 
Top