comparison test and limit comparison test for series

iDoof

New member
Joined
Oct 17, 2005
Messages
21
i've got this infinite series:

the SUM of (n!/(n^n)) from n=1 to infinity. i think one of the comparison test is what i need...but i don't know what to compare it to...


someone please lead the way for me!!!


thanks
 
What is it that you are trying to show? A problem statement would help.
 
Hello, iDoof!

I assume you're trying to prove convergence or divergence.

the SUM of (n!/(n^n)) from n=1 to infinity.
The Ratio Test works for me . . . but it's messy.

. . . . . .a<sub>n+1</sub> . . . . . .(n+1)! . . . n<sup>n</sup>
R . = . ------- . = . ------------- . ----
. . . . . . .a<sub>n</sub> . . . . . (n+1)<sup>n+1</sup> . . .n!


. . . . . . . . . . . . . . . n<sup>n</sup> . . . . . . . . . . .n<sup>n</sup>
. . . = . (n + 1) ---------------- . = . ----------
. . . . . . . . . . . .(n+1)(n+1)<sup>n</sup> . . . . (n + 1)<sup>n</sup>


. . . . . . . . . .1 . . . . . . . . . . .1
. . . = . -------------- . = . ------------
. . . . . . .(n + 1)<sup>n</sup> . . . . . . (n + 1)<sup>n</sup>
. . . . . . .---------- . . . . . . (-------)
. . . . . . . . . n<sup>n</sup> . . . . . . . . ( . n . )

. . . . . . . . . 1
. . . = . -------------
. . . . . . (1 + 1/n)<sup>n</sup>


Now we take the limit as n -> infinity.
If you recall the definition of e, you see that this limit approaches 1/e.

Since: . lim R .= .1/e .< .1, the series converges.
. . . . . .n->oo
 
Top