Combinatorics - identity: sum[0<=k<=n/2](-1)^k binom(n-k,k) 2^(n-2k) = n+1 ...?

evebart

New member
Joined
Jan 11, 2018
Messages
1
Maybe can someone help? Is the equation with n ≥ 0 correct? (easier to solve by using generating function)



\(\displaystyle \displaystyle \mbox{2. }\quad \sum_{0\leq k \leq n/2}\, (-1)^k\, \binom{n\, -\, k}{k}\, 2^{n-2k}\, =\, n\, +\, 1\quad ?\)

\(\displaystyle \displaystyle \mbox{3. }\quad \sum_{k=0}^{n}\, \binom{n\, +\, k}{2k}\, 2^{n-k}\, =\, \dfrac{2^{2n+1}\, +\, 1}{3}\quad ?\)

\(\displaystyle \displaystyle \mbox{4. }\quad \sum_{k=0}^n\, \binom{2k}{k}\, \binom{n}{k}\, \left(-\dfrac{1}{4}\right)^k\, =\, 2^{-2n}\, \binom{2n}{n}\quad ?\)

\(\displaystyle \displaystyle \mbox{5. }\quad \sum_k\, \binom{m}{k}\, \binom{n\, +\, k}{m}\, =\, \sum_k\, \binom{m}{k}\, \binom{n}{k}\, 2^k\quad ?\)

. . . . .\(\displaystyle \mbox{Here }\, \binom{n}{k}\, = 0\, \mbox{ if }\, k\, >\, n.\)
 

Attachments

  • ftk.jpg
    ftk.jpg
    48.9 KB · Views: 3
Last edited by a moderator:
Maybe can someone help? Is the equation with n ≥ 0 correct? (easier to solve by using generating function)



\(\displaystyle \displaystyle \mbox{2. }\quad \sum_{0\leq k \leq n/2}\, (-1)^k\, \binom{n\, -\, k}{k}\, 2^{n-2k}\, =\, n\, +\, 1\quad ?\)

\(\displaystyle \displaystyle \mbox{3. }\quad \sum_{k=0}^{n}\, \binom{n\, +\, k}{2k}\, 2^{n-k}\, =\, \dfrac{2^{2n+1}\, +\, 1}{3}\quad ?\)

\(\displaystyle \displaystyle \mbox{4. }\quad \sum_{k=0}^n\, \binom{2k}{k}\, \binom{n}{k}\, \left(-\dfrac{1}{4}\right)^k\, =\, 2^{-2n}\, \binom{2n}{n}\quad ?\)

\(\displaystyle \displaystyle \mbox{5. }\quad \sum_k\, \binom{m}{k}\, \binom{n\, +\, k}{m}\, =\, \sum_k\, \binom{m}{k}\, \binom{n}{k}\, 2^k\quad ?\)

. . . . .\(\displaystyle \mbox{Here }\, \binom{n}{k}\, = 0\, \mbox{ if }\, k\, >\, n.\)
We'll be glad to help, but first we'll need to know where you're having trouble. What methods are you expected to use? What have you tried? How far have you gotten?

Please be complete. Thank you! ;)
 
Top