If a matrix is in row-echelon form, then the column vectors with the leading 1's of the row vectors form a column space.
For instance, let's choose a matrix we'll say in in REF.
\(\displaystyle \L\\\begin{bmatrix}1&-2&5&0&3\\0&1&3&0&0\\0&0&0&1&0\\0&0&0&0&0\end{bmatrix}\)
Let's call the row vectors r1, r2. r3.
The row vectors are \(\displaystyle \L\\r_{1}=\begin{bmatrix}1&-2&5&0&3\end{bamtrix}\).
\(\displaystyle \L\\r_{2}=\begin{bmatrix}0&1&3&0&0\end{matrix}\)
\(\displaystyle \L\\r_{3}=\begin{bmatrix}0&0&0&1&0\end{bmatrix}\)
These are a basis for the row space.
Now, the column space is, as we said, made up of the row vectors with the leading 1's. Let's call them c1, c2, c3.
\(\displaystyle \L\\c_{1}=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}\)
\(\displaystyle \L\\c_{2}=\begin{bmatrix}-2\\1\\0\\0\end{bmatrix}\)
\(\displaystyle \L\\c_{3}=\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\)
See?.